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ABSTRACT

This report concerns two so-called inverse problems of mathematical

physics. These are: (i) the problem of determining a second~order differ-
ential operator (in a normal form) on the half-axis from its spectral function;
and, (ii) the problem of determining a hyperbolic boundary value problem of a

special form in a (non-characteristic) half-plane from its response on the
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boundary to a unit impulse at some reference time t = 0 (boundary value of
the Riemann function).

We solve problem (ii) by a natural.approach, and then indicate how the
solution of problem (i) follows from the solution of problem (ii). Our solu-

tion of problem (ii) is constructive, and we obtain stability of the solution

under perturbation of the data, in a well-defined sense.

For problem (i), we obtain the well-known result of Gel'fand and Levitan,

SN S P

in the sharp formulation given by Levitan and Gasymov ([6]).
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Significance and Explanation

This report concerns an inverse problem of wave propagation. In general,

inverse problems for dynamical systems require that the dynamical laws of a

system be recovered from information about the behaviour of the system, such
as its response to a specific stimulus, or its long-time asymptotic behaviour.
Direct problems of dynamical systems, which require that the behaviour of a
system be calculated from the dynamical laws, assumed known, have a long
history, and comprise the bulk of classical mathematical physics. Of course
our understanding of physical systems proceeds by the solution of inverse
problems: we observe the behaviour of a system, and try to infer its dynamics.
Nevertheless, such inverse problems are usually approached by a sequence of
guesses about the dynamical laws perhaps with some free parameters followed
by solutions of the corresponding direct problems, and attempts to adjust

the free parameters so that the predicted behaviour of the system matches its
observed behaviour. Frontal attacks on specific inverse problems, on the
other hand, have been relatively rare.

In this report, we consider a very simple model inverse problem of wave
propagation in a one-dimensional inhomogeneous medium. Examples of physical
problems to which our methods apply are: (i) the description of the
(inhomogeneous) density distribution of a vibrating string from observation
of the motion of one point along its length; (ii) synthesis of a cable of a
restricted type, having prescribed transmission characteristics for signals
of various frequencies.

In actual applications, stability is an important attribute of any compu-
tation scheme. One wants to ensure that small errors in the input data do not
result in huge, uncontrollable errors in the solution; otherwise, the scheme is
generally useless. We show that our reconstruction of the dynamical law of
our simple model system is stable, in a precise sense, against small perturba-
tions of the "observed" data; in fact, we give an approximation scheme with

explicit error bounds.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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INVERSE BOUNDARY VALUE PROBLEMS
AND A THEOREM OF GEL'FAND AND LEVITAN

W. Symes

§1. Introduction.

This report concerns two so-called inverse problems of mathematical physics. These are:
(i) the problem of determining a second-order differentigl operator (in a normal form) on
the half-axis from its spectral function; and, (ii) the problem of determining a hyperbolic
boundary value problem of a special form in a (non-characteristic) half-plane from its re-
sponse on the boundary to a unit impulse at some reference time t = 0 (boundary value of the
Riemann function).

We solve problem (ii) by a natural approach, and then indicate how the solution of
problem (i) follows from the solution of problem (ii). Our solution of problem (ii) is con-
structive, and we obtain stability of the solution under perturbation of the data, in a well-
defined sense.

For problem (i), we obtain the well-known result of Gel'fand and Levitan, in the sharp

formulation given by Levitan and Gasymov ([6]).

§2. Notation and Statement of Results.

We will write R" = [0,») € R throughout. We use the common notations Ck(UL U,
C&%U), 8&(0» &' (u), D' (U) for the space of k-times, respectively infinitely differentiable
functions, respectively those with compact support, with the usual Frechet topologies, and
their strong duals. Here U c r" may be closed or open.

We denote by WT;i(U) the collection of functions in Cm-l(U) whose mEE- partial
derivatives, which a priori exist as distributions, may be identified with locally absolutely
integrable functions on U © !P , i.e. 1lie in Lioc(u). We give wTéi(U) its usual Frechét
topalogy.

If U c R, denote by wié;(u*v) the space of continuous functions on U x V whose

(distributional) partial derivative in the first (second) variable may be identified with a

continuous function of the second (first) variable with values in Lioc(U) (Lioc(V))'

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.




According to Fubini's theorem,
(UXV) c W (va) -

It is clear how to define wloc(Q) for an arbitrary open set Q c 112, since the
definition is local, and any p € Q@ has a product neighborhood. On the other hand,
suppose Q 1is closed with smooth boundary, and let f ¢ C0 (Q) n Wi"; (int Q). Let
pe 9Q, and select U,V ¢ R open so that UXV is a neighborhood of p in :Rz. Then
for each x € U (y € V), extend the partial derivative sz(x, .) (le(°,y)) to a distri-

bution on V (U) by requiring

(D,f(x,+),9) = (sz(x.')wlvx) for ¢ € C.(V)

€D E(,y) .0 = (D £(+,y), 8] )  for ¢ e c (V)
where Vx = {y e v: (x,y) € Q}y (UY = {x e U: (x,y) € D).
We declare that f ¢ Hi;(Q) if and only if, for each choice of p,U,V as above, each
x ¢ U [y € V), the partial derivative sz(x, ) (le(-,y)) may be identified with a
locally integrable function on V (U), and the map x » sz(x,-) (y b le(-,y)) is
continuous, i.e. 1lies in P (U; Lioc(V)) (C0 (v; Lioc(U)).
The topology on W (Q) is given by the C0 (Q)-seminorm and the local norms of

the form

sup [ dy lsz(x,y)l, sup f deD £(x,y)|
x€eK L yeL K

with K, L € R compact.
Finally, fe w (Q), m>1, if and only if £ e ¢ 1(Q) and all m-15% order
partial derivatives of f are in Wl'c(Q). The topology on W (Q) is defined in a

similar way to that of W (Q). We note that Vm' (Q) < W (Q), and that the topology

m,l
loc

Functions in W (Q) may be constructed in the following way: suppose f ¢ Wm' (R).

on W is stronger than that of Hm'l
Then, as is easily verified, the function F : Q -+ € defined by
F(x,y) = f(ax + by)
for some (a,b) € Rz, lies in V (Q), for any closed Q with piecewise smooth boundary.

In fact, the spaces Wm'l enter the theory developed here in precisely this way.

loc

We shall use various common notations for derivatives and partial derivatives, such

-2-
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as primes, subscripts, D f;( , etc., without comment.

o

Our results provide an alternate route for part of the proof of the following theorem,
which is a sharp version, due to Levitan and Gasymov ([6]), of the celebrated theorem of
Gel'fand and Levitan ([4]).

Theorem I. A nondecreasing function p:R + R is the spectral function of a

boundary value problem on R+ = [0,®):

-y" + (@- Ny =0

y' (0} + h ¢ y(0) =0 , h ¢ R
. wm + 3 g 3 3 o
with q « loc(R ), if and only if p satisfies the conditions:
(i) the integrals
[N ac0) cos Vi x = 1 ()

-

converge absolutely to functions in w'{';l:(n* ), where

YOI
o()) =
p () ' ALO

0

| v

e

Moreover, {IN : N € Z} converges as N » @ in Vf:;i(li+) to a function
with £(0) = h .
(ii) Suppose u € L2(]R+) has compact support. Let
;\i(\) = fm dx u(x) cos /A x .
Then U ¢ L (R;d?)), and
o e im]? =o

-

if and only if u = 0 a.e.

Remark. In (ii) above and for the rest of this paper, "cos VA x" denotes the entire
function of 1 whose value for \ > 0 is cos /A x . In particular, for \ <0 ,
cos V) x = cosh /mx.

The bulk of this paper is devoted to proving the following two theorems, from which
Theorem I follows, and which are of interest in their own right:
Theorem II. An even function }' : R » R is the boundary value of the Riemann
function:

f(t) = R(0,£,0,0) , t#0

for a hyperbolic boundary value problem:

-3
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utt-uxx-fqu-o
ux(O,t) +hu(,t) =0, t e R
e + " .
with q € WTOC(R ) if and only if
s +1
(i) te Lapd ¢ S ) =h
(11) the kexnel £(s,t} = -12-(¥(s+t) + ¥(s-t)) satisfies the condition:

for any T > 0 , there exists €(T) > 0 so that for all u € Lz([O,T]),

IT ds IT at u(s) u(t)f(s,t) + J'T I\.\I2 > e(T) fT |ul2 "
0 0 0 0

Remark. An easy compactness argument shows that the condition (ii) above is equivalent
to the assertion that

[Tas [T at uts) ve) £(s,8) + [ Jul® >0
o, 0 0
for all u € L' (R ) with compact support.

n
Theorem III (i) The collection of even functions f e vf;;l:’l(n) defined

by condition (ii) in the statement of Theorem II forms an open set in vf;;l:'l(ll)even.

n
(ii) for any even f in wT;i'l(R) , there are precisely one h € R and one

"m,l + v - .
q € loc(n ) so that £(t) = R(0,t,0,0), t # 0, for the Riemann function R of
the boundary value problem

utt = uxx +qu=0

ux(O,t) +hu(O,t) =0
(iii) The map ? b (h,g) whose existence is implicit in statement (ii), is a

+
continuous map from the open set described in statement (i) to Rxw‘;léi'(k I

Remark. Theorem III is a uniqueness and stability theorem. Theorem I is, of course,

more-or-less well known, and Theorem II could be deduced from Theorem I. Our method of
proof, however, proceeds by means of an iteration scheme, with error bounds given explicitly
in terms of the numbers ¢(T) mentioned in Theorem II, and various norms of ? . In

particular, we obtain the stability statement of Theorem III, which seems to be new.




§3. Heuristic Discussion of Results
Problem (i) is concerned with the spectral function of a boundary value problem
=y"(x) + (@(x) - My(x) =0, x>0, AeR
t3-1)
y'(0) + hy() =0
where h is some real number. Let ¢(x,)) be the solution to (1) selected by the initial
condition

$(0,2) =1 .

The spectral function of (1) is a nondecreasing function whose associated Stieltjes measure

properly weights the "eigenfunctions" ¢(¢,)A) in the spectral resolution of the identity
for (1), which is concisely written

S(x=y) = [7 ap(A) ¢(x,\) ély,\). (3.2)
In this heuristic di;cussion, we shall not worry about making precise sense of diver-
gent integrals such as (2); that is done, in any case, in standard textbooks on spectral
theory of ordinary differential operators, e.g. [2], Ch. XIII. Nor shall we make precise
smoothness assumptions on q .

Problem (i) is: given p , find the differential equation (that is, g) and the

boundary condition (that is, h), which give rise to p . Of course, this involves de-

scribing those nondecreasing p that arise as spectral functions of problems of type (1).

Problem (i) is a refined version of the inverse eigenvalue problem : to construct

a differential operator of some special type, cum boundary conditions, having a given
spectrum. This problem admits a large amount of non-uniqueness in its solution. Since
the points of increase of the spectral function of (1) exactly amount to its spectrum,
a solution to problem (i) certainly solves the inverse eigenvalue problem. The spectral
function also carries normalization information, however, and this additional information
makes its solution unique.

For a history of these problems consult [3] and references cited therein.

Problem (ii) is concerned with a hyperbolic boundary value problem

2 2
{ L oo L iqufuxt) =0 xt) e RV x R
x

Al

(3.3)

g

&‘(ort)+h“(01t)501 teR
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The Riemann Function R(x,t;xo,to) is the solution of the mixed problem obtained by

adding to (3.3) the initial conditions

u(x.to) = G(x-xo)

du
3t (x,to) 0 .

Then u(x,t) = R(x,r:x ,to). Again, q is "smooth enough", and we do not worry for the

0
moment about the sense in which a distribution satisfies a mixed problem of this sort.
In fact, as explained in [5], R is a special distribution with well-defined restric-

tions to vertical (and horizontal) lines such as {x=0}.

We also note that our Riemann Function is a derivative of the object usually called
by that name; see [1], Ch. VI, §15.

Note that the solution of the inhomogeneous mixed problem

132 32
s + q(x) |ulx,t) = g(x,t), £t >t_ , x >0
2 0 -
at Ix
\
3 =
ﬁ (0,t) +h u(,t) =0 (3.4)
1 u(xt)=a—“(ut)=0 x>0
"o 88 O AR N
can be represented in the form
u(x,t) = ft do fo at f»dy R(x,t,y,7)gly,«) (3.5)
t, to 0

(Duhamel's integral). The system (3.4) models certain processes (e.g. nonuniform trans-

mission lines) subject to an imposed force ¢ , in which signals, represented by u ,

propagate with unit speed, and some boundary conditions are imposed at the "surface"
x = 0. Then (3.5) represents the "forward" (t > to) response of the system to the

impulse g . If we choose in particular g(x,t) = §(x-x t-to), then

0'
_ u(x,t) = ft R(x,t,xo,ao)dc, €t > to “
: : -

¥ 0

We conclude that

[Fas ¥s) = [* as r(0,s,0,0), t >0
0 0

represents the response at time t > 0 at the surface x = 0, to a unit impulse applied

at t =0, x=0.

6=
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Problem (ii) is: given f , find the boundary value problem (3.3), that is, find
the function gq and the number h . Otherwise put, we are to recover the dynamics of
the system from a knowledge of its response along the "surface" x = 0 to a unit im-
pulse, also applied at the surface.

Problem (ii) is prototypical of a variety of inverse wave propagation problems of
applied mathematics. We refer the reader to [3], [8], for instances.

We now observe that problems (i) and (ii) are equivalent. In fact, if we
denote by L  the self-adjoint ordinary differential operator defined by the boundary
value problem (3.1) (with a boundary condition at x = « supplied, if necessary), then
the Riemann function is just the distribution kernel of cos tvL . and admits the spectral
representation

R(x,&,%,t0) = [: dp (M) cosvh (t-t)) o(x,}) olx /M.
In particular
£(t) = R(0,£,0,0) = [~ dp(1) cosVA t

oy
so that f 1is the Fourier transform of o . Thus knowledge of f and knowledge of p

are equivalent, so problems (i) and (ii) are equivalent.

Since problems (i) and (ii) are equivalent, the solution by Gel'fand and Levitan

(4] of problem (i) also solves problem (ii). We prefer, however, to deduce the solution
of problem (i) from that of problem (ii), and in so doing present a natural interpreta-
tion of the machinery in (4] in the context of hyperbolic p.d.e. Besides a better
understanding of the well-known results and methods of (4], we are immediately led to
the correct stability result for problem (ii) (Theorem III), and to the solution of a
number of other inverse boundary value problems (see [9]).

We should point out that the equivalence of problems (i) and (ii), and the hyper-
bolic interpretation of the ideas in [4], are more-or-less well known. However, no
careful statements on the lines of Theorem II have appeared in the literature, nor has
a stability result of the type of Theorem III been previously asserted, to our knowledge.

Our approach to problem (ii) is based on several elementary properties of the Riemann

function, especially:

-




(i) (Group property) Let U(t) be the operator which maps Cauchy data
(u(x,to),ut(x,to)) for a solution of (3.3) at time tO to the Cauchy data for
the same solution (u(x,t+to),ut(x,t+to)) at time t+to. Then

U(s)U(t) = U(s+t) (3.6)

(ii) (Progressing Wave Expansion) The distribution E(y,t) = R(y,t,0,0) can

be decomposed:

Rly,t) = 8(y+t) + 8(y-t) + K(y,t)
where K(y,t) = K(y,-t) has one more derivative than the coefficient gq in the
region y :_|tl, vanishes identically outside that region, and on the boundary

satisfies the transport equation

K(t,t) = - % f a+n. (3.7)

0

These assertions will be made precise in §4. They are essentially classical results
for which methods of proof are to be found for instance in Chs. V and VI of [1].

Since the operator U is implemented by the Riemann function, (i) and (ii)
plus some symmetry properties of R , together imply an integral equation for R s

Els,t) = TE(st)+E(s=t)) = [ dy Riy,0)R(y,s) . (3.8)
0

According to property (ii), we may replace the upper limit of integration on the right-
hand side of (3.8) by max(!t[,|5|), and we obtain, for instance, for t >s >0

£(s,t) = K(s,t) + [° dy K(y,t)K(y,s) . (3.9)
0

We base our solution of problem (ii) on this nonlinear Volterra equation, derived in a
different way by Gel'fand and Levitan. The hypotheses of Theorem II are precisely what
is necessary to ensure that (3.3) has a glchtal solution.

Further, our method of solving (3.9) for K is manifestly stable against small
changes in the data f (Theorem III). Finally, explicit error bounds appear (£5) which
allow one to estimate the efficiency of our approach for numerical computation. This
circumstance should be compared with most other treatments of problem (i) along the lines
of [4] (see especially [6], [3]), which turn on the solution of a linear integral equa-
tion of Fredholm type related to (3.9). By contrast, our error estimates involve only a

lower bound for this Fredholm operator.

aBe
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Having solved (3.9) for K , it is relatively easy to show that K is the appropriate
piece of the Riemann Function for a boundary value problem (3.3), with coefficient func-
tion q related to K by the transport equation (3.7). This is accomplished in 57 .
Finally, Theorem II is used in 58 to supply the key ingredients of the proof given in

{6] of Theorem I, and we leave the matter there.

§4. Properties of the Riemann Function

This section is devoted to the necessity part of Theorem II, that is, the proof that
the boundary value of the Riemann function of a problem of form (4.1) below must indeed
satisfy the conditions (i) and (ii) in Theorem II.

Most of the following assertions are standard and can be found, for instance, in [1],
Chs. V and VI, in one form or another. In a few cases, our finite differentiability
hypotheses and imposition of boundary conditions in the progressing wave construction of
R are incompatible with readily available results; however, the proofs are the appropriate
modifications of the available ones, and we omit them.

We denote by R(°*,*;x ,t:o) the solution of the boundary value problem

0

- + =
ut-.t uxx au 0

(4.1)
ux(o,t) - hu(0o,t) = 0.
with initial conditions
R(x,t_;x_,t ) = §(x-x_)
s \ (4.2)
)
Y R(x,t,xo,to) = 0.

t=t 0

We assume that q € WT(')‘];(R+), m > 1. Then:

I. (Regularity) Re C(R, x R x R ;&8 (RNnC™(R xR x R ;D' (R)).
t Xo to X X Xo to : A

Property I follows from a theorem on solutions of (4.1) with smooth Cauchy data and the

Schwarz kernel theorem, via standard arguments.

af




II. Symmetry)

Rix,t;x ,to) = R(xo,t ix,t)

(¢} 0

= R(x,to;xo,t)

R(x,t-s,xo,to-s)

for s ¢ R; in particular
R(x,t;xo.O) = R(xl-t;xo,o).
Note that I and II combine to yield further regularity properties.

Denote by & the matrix of distributions

R(x,t;x_,t.) ft do R(x,t;x_ ,0)
0" 0 H 0
0
a(xrt;xolto) - .
9 ) it
pYS R(x,t;xo,to) s g do R(x,t,xo,o)
o]

Then the solution of (4.1) with smooth Cauchy data
© 4
u(x.to) = uo(x), ut(x,to) = vo(x)e C(R)

is given by

u
BOLER | o fRte e del N 1D @.3)
ut(x,t) Yo

where we have written (S,¢) for the evaluation of a distribution S on a test function

¢, and regarded ® as a matrix-valued distribution in the third variable. We shall find
it convenient to write

u(x,t) s fm dxo Al atex

u, (x )
Ci) ok } 4.4)
ut(x,t) 0

L vo(xo)
with the integration "in the sense of distributions", i.e. (4.4) means (4.3). We shall
also find it convenient to indicate the composition of distribution kernels such as R,R
by integrals (see [10] Part III; note that compositions of the type below make sense
because R is semiregular, in the language of [101).
III (Group Law)
R(x,s+t,x0,to) = gﬂ dy ﬁ(x,s+t;y°s) ﬁ(y,s;xo,to).

This is just (3.6) written in terms of distribution kernels. It is a consequence

of the independence of time of the coefficient and boundary condition of the problem (4.1).

-10-
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As in 53, we write R for the distribution kernel on R+ X Rz
\
R(y,t) = R(y,t;0,0)

Lemma

-

« e SR R R T

FRO,t-5) + RO,t4s)) = [“ay R(y,s) Kly,t) @.5)
0

ST

Proof . By III ,

R(0,t+s) = F dy R(0,t+s,y,s) R(y,s,0,0)

0
o +
+ [Tay ( [**° a0 r(0,t4s,y,0)) D, Rly,s,0,0). 4.6)
0 s
However, using the symmetry properties (II),

t

f b do R(O,t+s,y,0) = ft do R(0,t,y,0)
s 0

DZR(y,s,O,O) = -D_ R(y,-s,0,0).

b
Thus the second integral (composition of kernels) is odd in the parameter s whereas
the first is even. Replacing s by =-s in (4.6), adding, and multiplying by % gives
the result. q.e.d.
4 IV. (Progressing Wave Expansion)
Rly,t) = S(y+t) + S(y-t) + K(y,t) “@.7
where K « NT:::'I(Q) '
Q= {ty,t) eR xR sy <[t} , ana kiy,&) 20,y > [¢] .
Also the transport equation holds: for t >0 ,
K(t, ) = - %—g‘ q+h. @.8)

In the readily accessible literature, the progressing wave expansion is usually

developed for equations with c¢” coefficients and no boundary conditions. In our case,

we just barely get away with it, because of the finite differentiability assumptions.

Slightly altering the notation used in §3, write
R(0,t) = 26(t) + £(t)

-;— (K(0,s+t) + R(0,s-t)) = &(s+t) + &(s-t) + £(s,t)

A T g 4

£s,6) = 3 (Kisrt) + ¥(s-t)) .

m+l,1

Fon (RxR) according to IV ; according to II, ?

Ten ¥ ¢ w';;i'l(n), £ ew

is even and f is symmetric.




In view of all this symmetry, we consider the integral relation (4.5) when t,

s > 0. Then the progressing wave expansion reads
Rly,t) = S(y=t) + K (y,t)

and (4.5) becomes, for t > 0 ,

S(s-t) + £(s,t) = [ dy(S(y-t) + K (y,t)) (§(y-s) + K (y,s))

0
= 6(s-t) + K (s,t) + [°dy K (y,t) K (y,s)
or !
£(s,t) = K (s,t) + [° dy K (y,t) X (y,s) . (4.9)
Since both sides of {4.9) are cont(i).nuous, it holds for t = 0 also. Restricted to
0 <t<T, some T>0, the kernel k defines an operator of the form I + K'r’ where
I is the identity operator on LZ(IO.T]), and x,r is the integral operator
K,rg(y) = J'T dt K (y,t) g(t), s e T,

Thus I + lgr is a bounded (Volterra) operator on Lz((o,'r]), and in particular is
invertible.

Write F,r for the integral operator on LZ(IO,T]) with kernel f(s,t). Then (4.9)
can be written

T+ F = (T4KD T+ K 4.10)

which shows that the left-hand side is a positive semidefinite symmetric Fredholm operator
on Lz([o,'rl). We claim that, in fact, it is positive definite. Indeed, it is the product
of an invertible operator and its adjoint, and therefore positive.

Denote by ¢€(T) > 0 the smallest eigenvalue of I + F'I" Then for any y ¢ L2([0,'r]),

o, (THEDY) =TT as at ¥s) wie) £6s,8) + [T [o]? > er [T [0l @.11)
L?(to,m) 0 0 0 0

This completes the demonstration of the necessity of hypotheses (i) and (ii) in

Theorem II. The next three sections are devoted to their sufficiency.
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§5. Solution of a Nonlinear Volterra Equation.

B e s i PR

Let T > 0 , and set QT= {(s,t) : 0 <s <t <T}. In this and the next section,

| 3 we shall show that the equation

u : f(s,t) = K(s,t) + [° dy Kly,s) K(y,t) (s,t) € o (5.1)

m,l 0

m,l
. - . ' :
has a solution K ¢ Wloc (QT) for every symmetric f € Wloc(lo,'rl x [0,T)) which

satisfies condition (4.11) for some €(T) >0 .
We first show that (5.1) has a continuous solution for each continuous symmetric

f satisfying (4.11). We note in passing that continuous solutions are necessarily unique,

since (5.1) is a Volterra equation.
The existence proof consists of three steps.

Step 1. There exists some t > 0 so that (5.1) has a continuous solution in QE

This is true, in fact, independently of the hypothesis (4.11). We denote by V the

Volterra operator on C0 (QE)

V K(s,t) = f£(s,t) - [° dy Kly,s) K(y,t) (s.t) ¢ %

‘ Then a standard contraction mappgng argument shows that, provided t is small enough,
the operator V has a fixed point in C0 (QE)'
‘F Precisely, we obtain
i» A. Let || ”t-: denote the sup norm in C° (Qg). Then the ball
' ‘ B, §(f) = {g € CO(QE) .| q-fll‘-__ < e}
F is invariant under V , provided

2t (e + ||£ IIE)2 % e S
B. For gl,g2 € BE E(f)' € as above,
{

llva, - va,ll <2Eee + [l £llz) gy -3yl -

Thus V is a contraction operator for t small enough.
: C. Denote by K the fixed point of V in c°(c§), and set
C=t, fav?®
then
&=z < 2B+ |l £llg" e .2)
These conclusions are completely straightforward. We exhibit them only to make explicit

the dependence of the error estimate (5.2) on the size of f .

=-13-
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Step 2. We suppose that (5.1) has been solved in q for some t > 0. We write .
%(s,t) = K(s,t), 0 s <t<t<T
and note that (5.1) becomes, in the region 0 <s _<_E <t <,
f£(s,t) = o(s,t) + [° dy K(y,s) oly,t) (5.3)
which for each t ¢ [t-:,'l‘l, is g linear Volterra equation with continuous kernel, hence

has a continuous solution, which also depends continuously on the parameter t , since

the inhomogeneous term does.

Set fc(S) = f(s,t), @t(s) = &(s,t).
Then, in the notation of (4.10,11), replacing T by t, (5.3) becomes
4
ft = (I + Ke) Qt
and (4.11), implies
2
Il

| £ »
L% (10,81

T
=(¢ ,(I + KE)(I + Ki)ot)

€

(5.4)

- 2
=(0 ,(I+F)o) >e®)] ¢l LELE
. e haill ol o :

We observe that we can replace e (t) by e(t'), &' 12, in (5.4), in particular we can

replace e(t) by €(T). Together with the Schwarz inequality, this implies

[Fay ey ey < 2 (5.5)
(o]
Here A(T) = sup (|| sz 2 e |l 2 L
0<s,t<T Lttty * £t

The important point, of course, is that the right-hand side of (5.5) is independent of t.
Step 3. For t <s,t, (5.1) reads, in the notation of Step 2

t
This problem is of the same form as that dealt with in Step 1. Therefore we can solve

£(s,t) = K(s,t) + [Cay o(y,s) o(y,t) + [ ay K(y,s) K(y,¢). (5.6)
0

(5.6) in a region of the form {(s,t) : t <s <t <t + §}, where § depends as in
Step 1 on the uniform norm of the inhomogeneous term g

fr(s,t) = £(s,t) - ({E dy oly,s) oly,t) . j
Since (5.5) provides us with an estimate of the size of fE which may be taken inde-

pendent of i , the increment & may also be chosen independently of t.
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It follows that a finite number of repetitions of Steps 1-3 suffice to obtain a

continuous solution K of (5.1) in Q(T). The construction procceds by alternately

solving nonlinear Volterra equations over small intervals, and linear Volterra equations

over large intervals. The error in each step, hence the cumulative error, and the

number of steps required, may be estimated in terms of the three numbers

”f”T, AP ., elT) .
Suppose now that f ¢ Cm(QT). By differentiating (5.1) formally, we obtain equations
for the derivatives of K , which we solve in exactly the same way as we solved (5.1).
Thus K e C(Q) .
We remark with an eye to the proof of Theorem III that the following easy estimate
shows that the condition (4.11) is stable against Co-small perturbations of ?:

| [Tas [Tat vis) Tee) (£(s,t) - £ (5,601 |
0 0

I A

2
el <, Il 1l £ts, ) - £ (s, ) |
L [0,T]

1210,1 Lﬁ[o,m
2

Il oll%, Tlle-ell .7
L [0,T] e (QT)

for any y € L2[0,T]-

v

IA

It follows that, for any f € Cm(QT) which satisfies condition (4.11), there
exists a neighborhood of f in Cm(QT) in which condition (4.11) is uniformly
satisfied (for some smaller € > 0 , perhaps). Easy perturbation arguments show
that the solution K € Cm(QT) of (5.1) depends continuously on the left-hand side f,

as f ranges over any such neighborhood.




§6. Existence and Stability in w‘;‘oz ;

The existence and stability of solutions of (5.1) with locally integrable derivatives
follow from the basic existence and stability theorem for linear Volterra equations. We
state this elementary result for the reader's convenience, though we have used it tacitly
several times in the previous section.

Theorem. Suppose a <b , Q= {(y,s) : a <y <s <b}, E a Banach Space

g € Cm([a,b];E), V € cm(Q;:R). Then there exists a unique ¢ € Cm([a,b];!-:) with

g(s) = v(s) + [° ay viy,s) v(y) .

Furthermore, the solu:ion map :

d"(ta,b);E) x (Q;R) > C"(fa,b],E)
(g,v) » v
is continuous.

Finally, there exists a W € Cm(Q;R), called the resolvent kernel corresponding to

V , in terms of which the solution ¢ may be written

¢v(s) = g(s) + fs dy w(y,s) gly) .
a

Now suppose that f e¥3l(K') satisfies (4.11) (The case £ W]/ (K, m > 2, :
oc loc
can be handled in exactly the same way so we give details only for m = 2.) Since
Wi; c C1 , the previous section guarantees that the solution K of (5.1) is in C:L (QT)
for every T > 0 , and depends continuously on £ € cl(QT).
We shall first show that K has a second derivative Dgl( with respect to its
second argument in CC([0,E]; L} ((€,1)) for every t ¢ [0,T]. We differentiate (5.1)

formally twice with respect to t , and obtain

Daf(s,t) = D) K(s,t) + [° &y K(y,) D) K(y,t) . ©.1)
0
2k .2 2 0 - 1, - =
Now f E”loc(x ) means that sz € C ((O,t]s; L ((t,'r])t) , for each t ¢ [0,T].

Let g: {0,t] + Ll (t,T by g(s) = D:f(s,-). Then the basic existence theorem asserts that

gl(s) = u(s) + [ dy K(y,t) uly) (6.2)
0

has a unique solution u ¢ c°([o,€], Ll [1-:,'1‘]). It remains to show that u may be iden-

tified with Di K as a distribution. In terms of the resolvent kernel G corresponding

to K the solution u to (6.2) may be expressed: {

-16-




u(s) = g(s) + [s dy G(y,s) gly) .
Q
The kernel G is also continuous. If we regard u and g as D'([t-:,'r])-valued
functions of s € [0,t), then for ¢ € C:((E,'r)) we may write

(uls),® = (g(s),0)+ [ dy Gly,s) (q(y),®
0

= (£(s,*),0m + [° ay Gly,s) (£(s,*)0"
0

= (K(s,*),¢")
where we have used the equation, equivalent to (5.1):

K(s,t) = £(s,t) + [° ay Gly,s) fly,t).

Thus u is indeed the second gerivative of K , and we conclude that
ook e (10,81 ; L' (E, )
for each t e [0,T], T > O. Finally, since K € Cl(Q,r) depends continuously on
f e Wz'l(o,r), the stability part of the basic theorem implies that Dgx also depends

continuously on f , in the sense of CO(IO,EI; Ll [t,T)), for each t .
The other two formal derivatives of (5.1) read:
2 2 d
le(s,t) = Dlx(s,t) + ( E'K(s,s)) K(s,t)
+ K(s,s) D1 K(s,t) + 02 K(s,s) K(s,t) (6.3)

+ js dy Dik(y,s) Kiy,t)
(o]

DIDZf(S,t) - DIDZK(s.t) + K(s,s)Dzl((s,t) i

+ gs dy sz(y,s) sz(y.t)

From ;hese equations, which hold a priori in the sense of distributions, we can
immediately deduce that K € wic'xl: (Q); we leave the details to the reader.

From the stability assertion about Dgx and some obvious fiddling with equations
(6.3) and (6.4), we can conclude that the map f B K is continuous in h’i(’:: (Q), in a
neighborhood of every f satisfying (4.11).

Finally, we point out that K inherits from f a property somewhat more special

than that of being in w'i"l

sy if £ is of the special form

£(s,t) = % (Fs+t) + ¥(s-t)), ¥ e vf;c';(n) :

Indeed, it follows from a remark in §2 that for any (a,b,c,d) ¢ R‘ , the function

-17=-
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sk f(as + b, cs + d)

is then in H';;(R) , and a simple modification of the above argument shows that the
function
s b Kl(as + b, cs + d)
is then also in WTC':: on its interval of definition. In particular,
s b K(s,s)
defines an element of w':;(n*) .

The details of this argument are very similar to that used to establish that

m,l i
X E"loc (Q) , and we omit them.
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§7. Recovery of the Boundary Value Problem

We shall show that the kernel K constructed in the last section is the regular
part of the Riemann function of some boundary value problem (4.1), thus completing the
proofs of Theorems II and III.

Suppose that e WT;];'I(R) is even. Set

£(s,t) = ;—(?(ut) + £(s-t))

£0) =h .

,m+l,1
"loc

Let K be the solution of (5.1) constructed in §§5,6, with f as above. Then K ¢

Then f ¢ (Rz) is symmetric. Suppose that f satisfies (4.11) for each T > 0.

Wl ), where @ = {(s,8) : 0 <5 <t}

As remarked in §6, the functions
s P K(as + b, cs + d)

+
are in v{;oi’l of their appropriate intervals of definition. In particular, the function
d

q(s) = =2 7y K(s,s)

is in WMi(RY) .
loc

We claim K solves the characteristic mixed problem

2 2
—32"'3—2+q(s)} K(s,t) =0 , s,t € Q

at 3s

3K (0,£) +h K(0,t) = 0 (7.1)

3s

K(s,s)-h—%fsq.
0

Before showing that K solves (7.1), we remark that the problem (7.1) has a unique
solution in k)';.;];:'l(g) , as is shown by standard arguments. Since the results of §4
imply that the regular part of the Riemann function of the boundary value problem (4.1),
with q as above, must solve (7.1) also, we conclude that K is the regular part of the
Riemann function. We have therefore proven Theorem II if we show that K is a solution

of (7.1).

To do this, note first that f solves

2 2
_32._% g0, %(o,t)so, teR.
at 3s

-19-
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(Note that f has second derivatives which are locally integrable in R ). According

to the integral equation

f(s,t) = K(s,t) + [° dy K(ly,s) K(y,t)

0
we have
(1) £(0,0) = K(0,0) = h
of K
(2) =y (o,t) = e (0,t) + K(0,0) K(O,t)
3K
L a_s_(olt) +h K(O,t) =0, t >0
2 2 2 2
@ o= | L Lo | LS xen- [ Exeo] ke .
it 9s t ds

- K(s,s) Dlx(s,t) - sz(s,s) K(s,t) - fs dy Dgl((y,s) K(y,t)
0

+ fs dy K(y,s) Dix(y,t)
0

{7.2)

The differentiation under the integral sign above, and various integrations by parts below

are justified (for the only questionable case, m = 1) by

Lemma . Suppose u € Coltl,tzl, v = Du € Llltl,tzl . Then

t
J2v=ute)-ue) .
5

We apply this Lemma to compute

fs dy Dzl((y,s) K(y,t) =
0 1

= [° ay p_(D K(y,s) K(y,t) - [° dy D K(y,s) D K(y,t)
0 y 1 0 1 1

= DlK(S,S) K(s,t) - DIK(O,S) K(,t)
+ [® ay x(y,s) D°K(y,t) - [ dy D_(K y,s) D Kiy,t))
0 b 0 Y 1
= Dll((s,s) K(s,t) - Dll((o,s) K(0,t) - K(s,s) DIK(S.t)
+ K(0,8) D,K(O,t) + [° dy K(y,s) DyK(y,¢) .
0

Hence for 0 <s <t

K('v') DIK(S'Q) - Dlx(s's) x(srt)

= [® ay k(y,s) Dix(y,t) - [fay DiK(Y:l) Kly,t)
0 0

where we have made use of the boundary condition (2). By virtue of the identity

(7.4)
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d
3s K(s,s) = Dlx(s,t) + DyK(s,t) o

we can add (7.3) to (7.2) to obtain

2 2 d
0= (l:>2 - Dl) K(s,t) - 2¢( = K(s,s)) K(s,t)

(7.4)
+ [° ay x(y,s) (0% - D2) Key,t) - [° ay((2 - D) Kiy,s)) Kiy,t) .
9 e 1 0 2 1
Set
uls,t) = (02 - D2) Kis,t) - 2( 2 x(s.8)) Kis,t) (7.5)
5 2 1 i ds ' Al
We can re-write (7.4) as
0 = u(s,t) + [° ay Kly,s) uly,t) - [° ay uly,s) K(y,t). (7.6)
0 0

If m >0 , we can immediately conclude that u Z 0 , since (7.6) is a homogeneous
equation of Volterra type, which finishes the proof of (7.1) in that case. If m=0 ,
we must be slightly more careful, since we know a priori only that u is locally inte-
grable in Q= {(s,t) : 0 <s < t}.

is approximated by £« w3'1 .

We reason as follows. Suppose that € ¢ "2 & € ¥1oc

.
loc
Then, according to §§5,6, the corresponding solutions Kn € W:; (Q) converge in
2'l(Q) to K As noted in §2, the topology of Wm'l is stronger than that of wm'l &
loc : i loc loc

If we denote by u the expression (7.5) formed with xn instead of K , the sequence

W

u thus converges in Lioc (Q) to u . However, the u, all satisfy (7.6) and are con-
tinuous, hence vanish identically. Thus u vanishes almost everywhere, and the differ-
ential equation in (7.1) is satisfied in the sense of distributions.

This concludes the proof of sufficiency, hence the entire proof, of Theorem II.

To prove Theorem III, we note that the coefficient q is determined by the transport
equation (characteristic boundary condition in (7.1)):

q(s) = =2 % K(s,s).

m+l,1

Since it was shown in 56 that K ¢ wloc

(Q) depends continuously on ' ﬂ;;i’l(k+)
it follows that the map
W lo,m 5 ¥ b g e Wi,

is (well-defined and) continuous in a neighborhood of every ¥ satisfying (4.11), which

is exactly the assertion of Theorem III.
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§8. Proof of Theorem I

Suppose p: R > R 1is a nondecreasing function satisfying conditions (i) and (ii)

of Theorem I

"
Lemma . f , defined as in Theorem I, cc:.\ndr—l (i), satisfies cond'l (ii) of Theorem II.
Proof . Suppose u € L2R+ has support in (0,T]. Then

| oijin?= e faomEm)?
R N » ® =N

=um MacimEm? s Maow|Em|?
Now =0 N

= j’m Iu|2 + lim IN do (A) ( des u(s)cosv’is)(f'rdt u(t) cosvit)
0 N+w =N 0 0
where we have used the ordinary Parseval formula for the (cosine) Fourier transform.

Now according to condition (i) of Theorem I,

lim f“ do()\) cosVA s cosVA't
N+w =N

exists in c°([o,'r1 x [0,T]). Hence

u(s)u(t) [~ do()) cos/AiscosVAt = u(s)ult)f(s,t)
is in L"‘(IO,T) x IO,';;), and by Fubini's Theorem

¥ o a2 - j'; dsdt u(s)ult)f(s,t) .
Thus g .

o< [farmjum|? = [T [ul® + [TfF asat u)u(e)£(s,t)
- o} 00

and condition (ii) says that the inequality is strict if u is not identically zero
a.e. This however is equivalent to Condition (ii) of Theorem II, as remarked in §2.
q.e.d
We may therefore apply Theorem II to conclude the existence of a hyperbolic
boundary value problem
U, uxx +qu=0
ux(o,t) + hu(o,t) =0

(8.1)

for which f is the boundary value of the Riemann function. Here q ¢ #:;(R*) .
Denote by ¢(x,\) the solution (in C™'I(R'), entire in A € €©) of
~¢"(x,)) + (g(x) - No(x,A) =

O(O,A) =1, 0' (0,2) = -h .

-22-
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One immediately verifies that the function

u\(x.t) H

cos /i t ¢ (x,2)
solves (8.1) with initial values

ux(x,O) = d(x,))

A
ut(x,o) 20 .
It follows that
X o0
u’(x,t) =g dx) ROXt,x0,0) 00k, 0) .
In particular
ux(o,t) = cosV} t
= f‘”dxo R(0,t,x,0) $(x,,)
0
= [Tax. Rix_,t) olx_,0)
0 Ol 0 xol
0
t
= ¢k, + [ dx) K(x),t) ¢(x;,))
: m+),1 5
with K e W77 (Q).

As in §6, denote by G the resolvent kernel for K . Then
6(t,0) = cosvi t + [F dx Glx,t) cosVA x . (8.3)
On the other hand, K satisfies equgtion (5.1). These two equations ((5.1) and (8.3))
constitute the input of the argument in [6], and we refer the reader to that excellent

reference for the remainder of the proof of Theorem I.

We remark that equation (8.3) was first derived by Povzner [7] in exactly this way.

Acknowledgement: I am pleased to thank J. Nohel and R. Turner for several helpful

conversations.
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